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Mass and heat balance equations for a zeolitic compact in the form of an infinite plate were 
solved and theoretical equations for the kinetic curves were discussed. Besides the general solution 
obtained by the residuum method, approximate solutions for limiting cases were derived. 

Several studies were carried out recently to elucidate the disagreement between the diffusion 
coefficients obtained from sorption measurements and those measured by the NMR spin echo 
method1 - 5. Most of this work was carried out on zeolites and in all cases the adsorption kinetics 
was relatively rapid. The investigation of these rapid processes is experimentally difficult and the 
heat effects must be either eliminated or involved in the theory. The problem of a simultaneous 
heat and mass transfer in relation to the measurement of diffusion coefficients was dealt with 
from different aspects in several communications2 -11. 

The aim of the present work is to find an optimum method of measurement and 
analysis of kinetic data obtained under nonisothermal conditions. The conditions 
during measurement of diffusion coefficients should be such that the system behaves 
practically as a linear one. For this reason the experiments are carried out in steps, 
the concentration changes of the adsorbate at the external surface of the adsorbent 
being small. This enables the use of a linear mathematical model, so that, e.g., 
it is not necessary to consider the temperature dependence of the effective diffusion 
coefficient for a given kinetic curve. However, the temperature dependence of the 
equilibrium concentration of the adsorbate cannot be eliminated in this way. This 
phenomenon plays an important role since the adsorption heat evolved influences 
the kinetic measurement. The mathematical model described below is fitted for the 
measurement on thin plates pressed from crystalline zeolites1 . A similar model 
for circular-shaped pellets was elaborated by Lee and Ruthven3

. We shall now derive 
the complete analytical solution of the problem formulated in the preceding work2

, 

which involved only the calculation of statistical moments of the kinetic curves 
and their dependence on the plate thickness. 
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MATHEMATICAL MODEL AND ITS SOLUTION 

The model is based on the following assumptions: 1) The compact of zeolitic crystal
lites can be depicted as a system of spherical porous particles of equal size, whose 
radius is negligible against the thickness of the plate, 2L. 2) As the mass transfer 
mechanism, we consider only the flow of the sorbing substance through the inter
crystalline space (macropores). We assume that the mass flow density J is given as 

(1) 

where Dg is the coefficient of intercrystalline diffusion based on the permeability 
of the porous medilim12 and cg is the concentration of the sorbing substance 
in the intercrystalline space (in units of amount of substance per unit volume of this 
space). Hence, we assume that the transport in the crystallites plays no role. 3) With 
respect to the structure of the sample (c/. point 1), we assume that the heat transfer 
rates decrease in the order: intracrystalline heat transfer> heat transfer in the zeolitic 
compact> heat dissipation from the plate surface into the surroundings. 4) The 
steps in the concentration of the sorbing substance ilcg = cg - cgi in consecutive 
experiments and the corresponding temperature steps ilT = T - Ti in each experi
ment are sufficiently small so that the changes of the adsorbate concentration 
ilca = Ca - cai can be expressed with a satisfactory accuracy by the linear relation13 

(2) 

where Ca is the concentration of the sorbing substance in the crystallites (in units 
of amount of substance per unit volume of crystalline phase), T is the temperature 
in a given place of the compact, and 

(3), (4) 

The subscript i denotes the respective initial values of concentration and tempera
ture. 

The mass and heat balance equations for a differential layer of the zeolitic compact 

can be under these assumptions written as 

(5) 

(6) 
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Here 'g is a factor involving the effects of tortuosity and variable cross section of pores 
on diffusion in the pores, IXg is the intercrystalline porosity, 

(7) 

(!p compact density, (!z crystallite density, xp heat capacity of the compact, Ap its 
thermal conductivity, -I:l.Had differential molar heat of adsorption, x coordinate 
measured from the plane of symmetry of the plate toward its surface. 

The initial and boundary conditions characterizing the kinetic experiment are 

Cg = cgi for t = 0 and O<x~L, (8) 

T= T; for t = 0 and O<x~L ~ (9) 

cg = cgi + L\cgo for t> 0 and x = L, (lO) 

-Ap(oT/ox) = h(T - Ti) for t> 0 and x = L, (11) 

ocg/ox = aT/ax = 0 for x = O. (12) 

Here we denote h the coefficient of heat transfer on the compact surface and I:l.cgo 

the step change in concentration of the sorbing substance at the compact at the begin
ning of the experiment. The ratio of the rates of penetration of the temperature 
and concentration profiles into the interior of the compact depends on the ratio 
of DT/ D eff, where 

(13) 

is the so-called temperature diffusivity and 

(14) 

is the effective diffusion coefficient of the sorbing substance in the compact. 

The range of the parameter DT/Deff for experiments with zeolitic compacts was 
estimated with the use of the data for Deff obtained by evaluating our experiments 
with the cyclohexane-zeolite 13 X system using the isothermal model. Typical values 
of Deff were between 10- 9 and 10- 8 m2 S-I. Based on the data xp = 0·84 and 
0·92 J.g- 1 K- 1 for zeolites SA and 13X (ref.14.3), we chose for the estimation of DT 
xp = 0·9 J g-1 K- 1 and further Ap = 5'9.10-4 kJ S-1 m- 1 K- 1 (refY). Finally, 
we used (!p = 1000 kg m - 3, so that according to Eq. (13) the value of DT is about 
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6 - 7 . 10 - 7 m 2 s -1 and DT/ D err = 60 - 700. Rough calculations showed that under 
the condition 

(15) 

the temperature distribution in the plate can be considered approximately inde
pendent of x during the whole process. Thus, the model of the simultaneous mass 
and heat transfer could be simplified for most of our experiments. When the tempera
ture is independent of x, we obtain from the differential balance (6) by integration 
over the volume of the plate and using the Gauss-Ostrogradskii theorem the integral 
balance. After introducing dimensionless parameters and the condition (11) we obtain 
the following mathematical formulation of the problem: 

Cg = S = 0 for ,= 0 and 0 ~ X ~ 1 , 

Cg = 1 for ,> 0 and X = 1 , 

acg/ax = as/ax = 0 for X = 0 . 

The dimensionless parameters are defined as follows: 

(16) 

(17) 

(18) 

(19) 

(20) 

(21), (22) 

(23), (24) 

(25), (26) 

and c~ is the concentration of the sorbing substance in the crystallites, expressed 
in units of amount of substance per mass unit of the sorbent (compare the definition 

of Ca in Eq. (2)). 
By application of the Laplace transform on Eqs (16) and (17) with boundary 

conditions (18)-(20) and solving the resulting ordinary differential equations we 
obtain the Laplace transform yep) of the kinetic curve yeo) defined by2 

yet) = Am(t)jAm( 00) (27) 

Collection Czecn0slov. Chern. Commun . [Vol. 451 [19801 



3396 Kocirik, Smutek, Bezus, Zikanova : 

as the relative saturation of the sorbent, where Llm(t) and Llm( (0) are the mass 
increments of the zeolitic compact from the beginning ofthe experiment up to a time t 
and up to the equilibrium, respectively. The solution in the Laplace domain is 

_ P = ~ tgh(~P)/~P 
y() P 1 + f(p) tgh (~P)/~P , (28) 

where P is a complex variable and 

f(P) = {3PI(P + 0:) . (29) 

The inversion formula for the Laplace transform iS16
• 

yCr) = lim ~ exp (PT) yep) dP . 
1 f a+ ib 

b-+ oo 27tl a -ib 

(30) 

The function yep) has exclusively simple poles, and this for Po = 0 and Pn = -q~, 
where qn(O: , 13) are the roots of the transcendental equation 

f3qn tg qn = 0: - q~, n = 1, 2, . .. (31) 

For 13 = 0 (isothermal case) we have qn(O:, O) = (2n - 1) 7t/2 and it can be shown 
that the following inequalities apply: 

(32) 

q( 0:, 13) has, as compared with the other two cases, one more root for q 1 < 7t/2. 
With increasing n, the roots approach the limiting value of (2n - 1) 7t /2. 

The solution for the integral (30) is 

00 00 

yeT) = L exp (Pk') Res y(Pk ) == L exp (-q~,) Res y(qk) , (33) 
k = O k=O 

where the residuums for the individual poles are given as 

R -(p) l' (p - Pn) tgh (-Jp)/~p es I' n = 1m ---'---=--=---'-'----'-'--'---

P-+Pn P[l + f(P) tgh (~P)/~P] 

= _ lim (q~ - q2) (tg q)lq 
q -+ qn q2[l + f(q) (tg q)lq] • 

(34) 
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For Po = 0 we have immediately 

Res 1'(0) = 1/(1 + j(O)) , (35) 

where j(O) = [3 for IX = 0 (i.e., for hL ~ DerdJpxp) and j(O) = 0 for IX =1= O. For ~ther 
poles we obtain by using I'Hospital's rule and Eq. (31): 

(36) 

Thus, Eq. (33) acquires the form 

y(,) = __ 1 _ _ 2 I: (1 - IXq~y exp (-q~,) ( ) 
1 + j(O) n=1 q~(l - IXlq~)2 + [3(1 + IX lq~) + [32' 37 

DISCUSSION 

The series (37) converges rapidly: even for the dimensionless time, = 0·01 we obtain 
the value ofy(,) from the first ten terms with an accuracy better than 2.10- 7 . Some 
special cases can be derived from this general formula: 

a) For [3 = 0, we obtain the solution for isothermal diffusion into the plate17
. 

As can be seen from Eq. (37), in this case the value of y( ,) is independent of IX. It is 
sufficient for a practically isothermal behaviour of the system to fulfil the condition 
[3 ~ n12. An insignificant temperature increase of the pellet can be attained not only 
by a weak evolution of heat and large heat capacity of the sorbent but also by an ef
ficient exchange of the formed heat with the surroundings, i.e., for a large value 
of IX. This, however, ought to be according to Eq. (37) unrealistically high. 

b) For a thermally isolated tablet, we have h = 0 and hence IX = O. The process 
is then adiabatic. The series (37) leads to the limiting value for, -t 00 lim y( ,) = 
= 1/(1 +f [3) instead of 1 as required by the definition (27). This is due to the fact 
that the definition (27) requires the same final and initial temperature of the system. 
The final temperature, however, is under adiabatic conditions higher, which leads 
to a decrease of the resulting equilibrium concentration. Since we evaluate in practice 
the relative saturation of the sorbent, it is of advantage to introduce the quantity 

~m(,) 
y(')ad = -- = (1 + [3) yeo) . 

~m( oo)ad 
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Instead of the series (37), we then obtain 

() = 1 - 2f (1 + fJ)exp(-q~T) 
l' T ad n = l q~ + fJ + fJ2 ' (39) 

which is in formal agreement with the solution of the problem of isothermal dif
fusion at constant volume and variable pressure3 ,17 ,18. 

c) In practice, strictly adiabatic regime does not occur. Sufficiently isolated sorp
tion systems, characterized by a small value of a, can however behave quasiadiabati-

. cally nearly up to the equilibrium state. This primary process is more or less well 
separated from the second stage of the quasiequilibrium sorption caused by cooling 
of the system. An idea about the extent of separation of these two processeS can be 
obtained from Eq. (37). As already mentioned, this series contains for a =1= 0 one term 
more with the parameter ql < rc/2. In addition. the difference qn+l(a, fJ) - qn(O, fJ) 
decreases with decreasing a and increasing n. Indeed, even for a = 0·5 the difference 
between the third term of the series (37) and the corresponding second term of the 
kinetic adiabatic curVe (a = 0) is in the relevant range of T and fJ less than 1%. For 
a < 0'1, the nonadiabativity of the system is influenced practically only by the second 
term of (37), whose contribution is by up to 5% lower than that of the first term 
of the adiabatic function. Hence, the cooling stage is described mainly, and for larger 
time practically exclusively, by the additional first term of the series with the para
meter q l' It can be shown with the aid of the expansion of tg x for small values of x 
that for a < 0,1 we have qi ~ a/(l + 13) with an accuracy better than 0'35% and the 
first term of the series (37) is [213(1 + fJ)/(2 ((1 + fJ)2 + afJ)J exp (-aT/(l + fJ)), 
Moreover, if we neglect the contribution of a to this term, we obtain for systems with 
a slow heat exchange with respect to the adsorption rate the approximate relation 

1'(r, a, fJ) ~ _fJ_ ' [1 - exp (- ~)J + 1'(T, 0, fJ). 
l+fJ l+fJ 

(40) 

For T = 1, the adiabatic sorption is at least 94% whilst in the range of validity 
of Eq. (40) (up to a = 0·1) the residual sorption proceeds at most to 10%; both 
stages are hence well separated. 

d) Although the series (37) converges rapidly, it does not give illustrative informa
tion about the initial course of the function 1'( T). An approximate solution is therefore 
desirable, which is obtained from the Laplace transform (28) for large P values. Then 
tgh.jP ~ 1 - 2[exp(-2.jP) + exp(-4.jP) + exp(-6.jP) + ... J and 

yep) ~ ~(~ _ fJ ) (1 _ (p + a)exp(-2.jP) - ... ). (41) 
l.jP a+f3.jP+P a+fJ.jP+P 
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Inverse Laplace transforms of the individual terms of this expansion can be obtained 
with the use of tabulated expressions. It can be shown that for both limiting cases, 
a = 0 (adiabatic) and 13 = 0 (isothermal), the first correction term in (41) involving 
exp (-2 .JP) gives a contribution to the original smaller than 2 .J(r/rt) r exp (-l/r) : 
: (1 + f3ry and it can be neglected against the leading term for r < 1/4. The other 
correction term, involving exp (-4 .JP), becomes significant only at about r = 0·5. 
Hence, the main term in (41) is sufficient for the discussion of the initial kinetic behavi
our of the sorbing system. 

We shall introduce the substitutions 

y = f32r, k = a/f32 (42) 
and the function 

R(z) = (.Jrt/2z) (1 - exp Z2 erfc z), (43) 

where z is generally a complex variable. This function can be expanded in series: 

00 2jz2j .Jrt 00 z2j 
R(z) = L -- - - z L -- = 

j = O (2j + 1)!! 2 j=O (j + 1)! 

.Jrt 2z2 .Jrt 3 4z4 =l--z+---z +-- ... , 
2 3 4 15 

(44) 

where (2n + 1)!! = 1.3.5 ... (2n + 1). 
The inverse transformation of the leading term in (41) then gives for the isothermal 

case: 
y(r) ~ 2 .J(r/rt), (45) 

i.e., the square root dependence on time, valid as a good approximation up to more 

than a half coverage. For the adiabatic case: 

y( r) ~ 2 .J( r/rt) R(f3 .Jr) , (46) 

which can be written as f3y(y) ~ 2 .J(y/rt) R(.J y), we have another type of dependence. 
It follows from the definition of the arguments y and r that a plot of yet) against In t 
gives essentially a single curve with a variable shift along the In t axis and a variable 

scale on the y axis. 
For the general case we obtain 

( 
R(A - B) - R(A + B)) 

f3y(y) ~ 2.J(y/rt) 1 - Y 2B . , (47) 
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where A = )(y)/2 and B2 = y(1 - 4k)/4. This gives with the use of Eq. (44) the 
following always real series: 

py(y) ~ 2 J~ [1 - ! )(ny) + ~ y - ! )n(1 - k) y3 /2 + ~ (1 - 2k) y2 -
n 2 . 3 4 15 

_ )n (1 _ 3k + k2) yS/2 + ~ (1 _ 4k + 3k2) y3 _ 
12 105 

- )n (1 - 5k + 6k2 - k3) y7 /2 + ... J . 
48 

(48) 

From this expansion we obtain as a special case for k = 0 Eq. (46) and for f3 = 0 
Eq. (45) (hence also y = 0). It should be noted that Eq. (4B) "gives useful results 
only if, = y/P2 < 1/4. 

e) When the reduced time 't increases, the number of significant terms in (37) 
decreases; for, > 0·2, the contribution of the third term is smaller than 0·001; the 
contribution of the fourth term drops below 0·001 already for 't > 0·06. Hence, 
it has no sense to use the approximate equations for higher values of ,. 

The results of the mathematical solution of the simultaneous heat and mass transfer 
during adsorption on a plate-shaped adsorbent will be used in our further work 
for numerical calculation of theoretical characteristics, delimitation of the validity 
region of the solution, and developing a method of evaluation of the kinetic parame
ters from experimental curves. 
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